Fractional Fokker-Planck dynamics: Numerical algorithm and simulations.
نویسندگان
چکیده
Anomalous transport in a tilted periodic potential is investigated numerically within the framework of the fractional Fokker-Planck dynamics via the underlying continuous-time random walk. An efficient numerical algorithm is developed which is applicable for an arbitrary potential. This algorithm is then applied to investigate the fractional current and the corresponding nonlinear mobility in different washboard potentials. Normal and fractional diffusion are compared through their time evolution of the probability density in state space. Moreover, we discuss the stationary probability density of the fractional current values.
منابع مشابه
Pseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملStability and Convergence of an Effective Numerical Method for the Time-Space Fractional Fokker-Planck Equation with a Nonlinear Source Term
Fractional Fokker-Planck equations FFPEs have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equ...
متن کاملFractional Fokker-Planck dynamics: stochastic representation and computer simulation.
A computer algorithm for the visualization of sample paths of anomalous diffusion processes is developed. It is based on the stochastic representation of the fractional Fokker-Planck equation describing anomalous diffusion in a nonconstant potential. Monte Carlo methods employing the introduced algorithm will surely provide tools for studying many relevant statistical characteristics of the fra...
متن کاملNumerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks
Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...
متن کاملA Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation
The fractional Fokker-Planck equation is often used to characterize anomalous diffusion. In this paper, a fully discrete approximation for the nonlinear spatial fractional Fokker-Planck equation is given, where the discontinuous Galerkin finite element approach is utilized in time domain and the Galerkin finite element approach is utilized in spatial domain. The priori error estimate is derived...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 73 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2006